logo
лаб3

Обзор эмпирических исследований методов моделирования валютного рынка

В работе Рычкова В.В. [3] предложена методика анализа и прогнозирования валютного рынка, включающая систему генерации сигналов торговой системы (купить, продать, удерживать, закрыть текущую позицию). Для генерации и идентификации сигналов используется анализ пересечения нескольких экспоненциальных скользящих средних с разными периодами усреднения. Критерием открытия позиций на куплю/продажу являются эмпирически найденные пороговые значения величины среднего количества всех подаваемых сигналов. Критерием закрытия позиции – уровень прибыли/ убытка, задаваемый экспертом. Сравнение эффективности методики на разных частотах временного ряда показывает, что наибольшая эффективность достигается на часовых данных. Недостатком является использование скользящих средних, известно, что они часто дают ложные сигналы, особенно во флэте, запаздывание сигнала во время тренда и разворота тенденции, что приводит к потере прибыли. Достоинством методики является простота использования, недостатком – неточность сигналов описания рыночной ситуации, низкая эффективность при боковом тренде.

В работе Зинина А.Н. [4] предложены модели прогнозирования доходности валют (и портфеля инвестора) на ВР FoRex, построенные на основе выделения периодических компонент ряда доходности методами сингулярного спектрального анализа. Анализируется ряд доходности в виде логарифмических разностей валютного курса. Для определения периодических компонент и их характеристик применяется метод предсказания главных компонент (PCLP) Д. Тафтса и Р. Кумаресана. Расчеты по предложенным моделям в соответствии с разработанными методиками представляют собой вычислительную задачу большой емкости. Указанный недостаток ограничивают возможности использования данного подхода для активной стратегии трейдера на рынке Forex в быстро изменяющихся условиях. В работе Литинского Д.С. [5] предложена методика построения эффективных трендовых торговых стратегий с использованием индикатора PCC и осцилляторов RSI, Stohastic. Модели представляют собой уравнения регрессии, в которых управляющая переменная (УП) представляется линейной функцией некоторых характеристик осцилляторов. Значения УП интерпретируются как критерии достоверности сигналов на вход в рынок (выход с рынка). В торговой стратегии для определения текущей (долгосрочной) тенденции используется технология «тройного выбора» и индикатор PCC, т.е. идентификация текущего тренда осуществляется вне модели. Получено четыре модели для четырёх стратегий. Результаты апробации моделей на часовых данных курса GBP/USD для всех четырех стратегий показывают, что добавление управляющей переменной (модели) к стандартным стратегиям (без модели) практически не меняет ситуацию. В работе Болотовой Л.Р. [6] представлены методы и модели исследования временного ряда валютного курса пары евро-доллар и ряда его приращений с целью выявления долговременной памяти, её глубины, трендоустойчивости, циклов. Используются методы фрактального анализа и аппарат теории нечетких множеств. Для определения уровня риска используется фрактальная характеристика временного ряда – показатель Херста. Результаты фазового анализа временных рядов подтверждают наличие долговременной памяти, которая объясняется присутствием циклов. Предложена шести цветная кусочно - автоматная прогнозная модель, в которой исходный числовой ряд приращений ВК преобразуется в лингвистический путем замены числовых значений термами (лингвистическими переменными) с учетом глубины памяти исследуемого ряда. Результат прогноза (величина приращения ВК на день) представляется в виде нечеткого множества, который затем трансформируется в числовой эквивалент с помощью процедуры дефазификации. Модель и метод прогнозирования предназначены для пред прогнозного этапа исследования ВР. Автор определяет область применения полученных результатов – краткосрочное прогнозирование критических тенденций на валютном рынке в качестве дополнительного инструмента трейдера.

В работе Смирнова С.В. [7] сделан акцент на исследование экономико-математических моделей влияния макроэкономических факторов на валютные курсы, в основу которых положено понятие индекса меновой ценности валюты. Предложены показатели инвариантных индексов меновой ценности валюты (аддитивный и мультипликативный), которые использованы для модификации стандартных (структурных) моделей для определения равновесного ВК. Рассмотрены модель Манделла-Флеминга, монетарные модели с гибкими и с жесткими ценами Дорнбуша. Предложена методика факторно-регрессионного анализа влияния агрегированных факторов на номинальные и «инвариантно - индексные» курсы валют, с помощью которой разработаны новые эконометрические модели регрессии меновой ценности валюты на выделенную группу агрегированных факторов. Построена регрессия индекса меновой ценности британского фунта на выделенные 4 главные компоненты. Низкие значения коэффициента детерминации уравнения регрессии - 0, 309 и величин удельного влияния каждого агрегированного фактора на валютный индекс британского фунта свидетельствуют о невысокой практической значимости полученной модели для прогнозирования ВК (не все факторы учтены).

В работе Муравьева Д.Г. [8] предложен алгоритм (модель) прогноза биржевых котировок на основе «многомерного нелинейного регрессионного метода, частным случаем которого, являются слоистые нейронные сети». Исходные данные в модели предварительно сглаживаются с помощью полинома Чебышева. В качестве нелинейной функции регрессии (индикаторной функции) использован гиперболический тангенс. С помощью оцененной модели осуществлялся прогноз значения валютного курса на день вперед. Для сравнения эта же модель, полученная нейросетевым методом, применялась для прогнозирования направления движения валютного курса. Автор делает вывод, что регрессионный метод показал лучший результат. Недостатком предложенного подхода является относительно низкий процент правильных прогнозов (60%). Кроме того, знак значения гиперболического тангенса «+/-» интерпретируется как рост / падение (восходящий / нисходящий тренд) курса соответственно, в том числе и на участках бокового тренда, что резко снижает ценность модели для использования в трендовой стратегии. Исследование на указанную тему предложено Гуляевой О.С. [9]. Автор в своей работе указывает на «смешанную» (неоднородную) природу ВК и возможности разбиения временной кривой на «фрактальные интервалы». В качестве показателя неоднородности кривой временного ряда ВК автор использует фрактальную размерность, метод определения которой, состоит в измерении длины кривой в различных масштабах времени. Автор выделил три интервала изменений значений фрактальной размерности: персистентный (соответствует тренду), стохастический (соответствует флэту) и антиперсистентный интервал (предупреждает о смене тренда). Недостатками являются: субъективный выбор «характерных участков» временной кривой для расчета фрактальной размерности, предпрогнозный характер метода и низкий процент точности прогноза на двух последних интервалах.

В работе Панилова М.А. [10] предложена новая теоретическая модель равновесного валютного курса, динамика которого формируется в результате агрегированного спроса и предложения на валюту участников валютного рынка: экспортеров, импортеров, домашних хозяйств (населения), центральных банков. В основе модели лежат подмодели динамики основных фундаментальных показателей, влияющих на формирование ВК: дефициты торгового и платежного балансов, индексы инфляции и пр. Получены спецификации моделей для каждого участника рынка. Эмпирическая проверка синтетической модели формирования ВК рубля на основе моделей спроса и предложения со стороны участников рынка проводилась на месячных данных ВК рубля по отношению к доллару США и евро за 1999 – 2008 годы. Прогнозирование динамики осуществлялось на основе модели Ингла – Гренжера. Предложенная модель может применяться для средне- и долгосрочного прогнозирования динамики валютного курса в биржевой практике. Модель не учитывает влияние валютных спекулянтов на формирование ВК, тогда как в краткосрочной перспективе в каждый момент времени они обеспечивают высокую ликвидность рынка. Кратко сформулируем основные выводы обзора. Все подходы к проблеме моделирования динамики ВК различны с точки зрения определения понятия прогнозирования. Большинство работ акцентирует внимание на прогноз как определение направления тренда, а не на непосредственно предсказание будущего значения цены инструмента. Анализируя работы, посвященные моделированию динамики валютного курса, можно сделать вывод, что вся методология в публикациях по характеру используемых методов может быть сгруппирована в три основные категории.

Первая категория посвящена непосредственно прогнозированию будущего значения ВК методами множественной регрессии.

Вторая группа работ использует сигнальный метод в рамках решения задачи диагностики (разладки) временного ряда. В качестве математического аппарата для построения моделей используются:

Третья группа исследователей пытается прогнозировать динамику номинального и реального валютных курсов на основе товарного подхода (модели потока на основе теории ППС, модель Манделла – Флеминга) и монетарного подхода – монетарные модели с жесткими и гибкими ценами.

Рассмотрим прогнозирование роста валюты на примере модели Манделла-Флеминга.