logo
вопросы переделенные

Способы вычисления ожидаемой доходности портфеля. Показатель ковариации и коэффициент корреляции.

Согласно теории Г. Марковица, для принятия решения о вложении средств инвестору не нужно проводить оценку всех портфелей, а достаточно рассмотреть лишь так называемое эффективное множество портфелей и выбрать оптимальный.

Инвесторы, стремясь максимизировать ожидаемую доходность, одновременно желают минимизировать риск. Наличие этих противоречивых друг другу целей затрудняем принятие решения о приобретении ценных бумаг на начальном этапе, т.е. в момент времени t = 0.

Уменьшить влияние противоречивых друг другу целей рекомендуется с помощью покупки не одной, а нескольких бумаг, каждая из которых может отличаться не только доходностью, но и риском.

Согласно уравнению (4.4) гл. 4 доходность ценной бумаги может быть вычислена по формуле:

г де С — будущая стоимость ценной бумаги; PV — текущая стоимость ценной бумаги или цена покупки.

Если же учесть, что портфель состоит из N числа разных по стоимости ценных бумаг, то уравнение доходности можно записать в виде

где р — среднеожидаемая доходность портфеля; х i — количество ценных бумаг i вида; r i — ожидаемая доходность ценной бумаги i вида; N — количество ценных бумаг в портфеле ( i = 1, 2, 3,... N ).

Ожидаемая доходность, как следует из формулы 12.1, представляет собой средневзвешенную величину. Однако в реальной действительности она имеет определенный разброс значений вокруг средней ее величины, что связано с рыночным характером поведения многих факторов. Это обстоятельство послужило основой для применения теории вероятностей и математической статистики при обосновании кривой распределения, имеющей форму колокола и названной нормальным распределением.

Ожидаемая доходность служит своего рода мерой потенциального вознаграждения, связанного с риском. Стандартное отклонение при этом может рассматриваться как мера риска. Чем больше его значение, тем больше риск.

С тандартное отклонение портфеля, состоящее, к примеру, из 2 ценных бумаг, рассчитывается по следующей формуле:

где G ij — это ковариация доходностей ценных бумаг i и j .

С тандартное отклонение портфеля, состоящего из двух активов, можно рассчитать также по формуле:

где G p — стандартное отклонение.

Ковариация — это статистическая мера взаимодействия двух случайных переменных, в качестве которых в нашем случае выступают доходности двух ценных бумаг i и j . Экономический смысл положительного взаимодействия состоит в том, что рост ожидаемой доходности одной ценной бумаги влечет за собой увеличение другой.

Для измерения корреляции используется коэффициент корреляции, который всегда находится в интервале -1 и +1. Если он равен -1, то это означает полную отрицательную корреляцию, если +1 — полную положительную корреляцию. В большинстве случаев он находится между этими двумя экстремальными значениями. Например, взяв доходности двух ценных бумаг i и j за ряд месяцев, можно увидеть, что они между собой связаны. При этом по расчетам коэффициент корреляции равен -0,7. Это означает, что рост доходности i ценной бумаги сопровождается снижением доходности; ценной бумаги. Численное значение коэффициента корреляции указывает на тесноту связи.

К оэффициент корреляции нормирует ковариацию для облегчения сравнения с другими парами переменных. Ковариация двух случайных переменных равна корреляции между ними, умноженной на произведение их стандартных отклонений:

где р ij — коэффициент корреляции; G i , G j — стандартное отклонение соответственно i и j ценной бумаги.