7. Амортизация кредитов
Многие займы, такие как кредиты на покупку дома и покупку машины, выплачиваются равномерными периодическими платежами. Каждый из них состоит из двух частей: процентов на остаток долга и части его основной суммы. После каждой выплаты оставшаяся сумма долга уменьшается на уже выплаченную величину. Следовательно, в следующих платежах та часть, которая содержит в себе начисленные проценты, меньше, чем проценты за предыдущий период, а часть, приходящаяся на выплату основной суммы займа, больше, чем в предыдущем периоде.
Допустим, вы берете кредит в 100000 долл. на покупку дома под 9% годовых на условиях выплаты всей суммы с процентами тремя ежегодными платежами. Сначала мы рассчитываем годовой платеж, для чего находим A, PVA которого составляет 100000 долл. при условии уплаты 9% годовых на протяжении трех лет:
PVA = A*[1/i-1/(i*(1+i)n)].
A = PVA/[1/i-1/(i*(1+i)n)].
A = 100000/[1/0.09-1/(0.09*(1+0.09)3)].
Таким образом, годовой платеж составляет 39505,48 долл. Далее необходимо определить, какую часть от 39505,48 долл. в первый год составят проценты и сколько придется на долю основного платежа? Поскольку процентная ставка равна 9% годовых, часть, приходящаяся на проценты в первый год, должна быть 0,09 х 100000, или 9000 долл. Остаток от 39504,48 долл., или 30505,48 долл. – сумма платежа от основной суммы в 100000 долл. Таким образом, после первого платежа остаток долга по займу составляет 100000 долл. - 30505,48 долл., или 69 494,52 долл. Процесс постепенной регулярной выплаты займа на протяжении всего его периода называется амортизацией займа.
Далее рассчитаем платежи во второй год. Процентные платежи во второй год составят 0.09 х 69 494,52 долл., или 6254,51 долл. Остаток от 39504,48 долл. после расчета процентов составит 33250,97 долл. – это выплата основной суммы. Остаток после второй выплаты, следовательно, равен 69494,52 долл. - 33250,97 долл., или 36243,54 долл.
Третий и последний платеж покрывает как проценты, так и основную сумму 36243,54 долл. (т.е. 1,09 х 36243,55 долл. = 39504,47 долл.). Рассмотренный график погашения трехгодичного займа представлен в таблице.
Год | Начальный долг | Общий платеж | Выплаченные проценты | Выплаченная основная сумма | Остаток долга |
1 | 100000 | 39505 | 9000 | 30505 | 69495 |
2 | 69495 | 39505 | 6255 | 33251 | 36244 |
3 | 36244 | 39505 | 3262 | 36244 | 0 |
Итого | 0 | 118515 | 18515 | 100000 |
|
Анализ представленных данных показывает, что с каждой последующей выплатой 39504,48 долл. часть, приходящаяся на проценты, уменьшается, а часть основной суммы, предназначенной для выплаты основной суммы займа, увеличивается.
- Основы финансовых вычислений
- Содержание
- 1. Учет временной стоимости денег
- 2. Простой и сложный процент
- 3. Частота начисления сложных процентов
- 4. Текущая стоимость денег
- 5. Оценка денежных потоков
- 6. Аннуитет
- 7. Амортизация кредитов
- 8.Влияние инфляции
- 9. Оценка долговых и долевых ценных бумаг
- 9.1 Цена облигаций
- 9.2 Зависимость цены облигации от процентной ставки
- 9.3 Доходность облигаций
- 9.4 Цена и доходность депозитных сертификатов и векселей
- 9.5 Доходность акции
- 10. Анализ и управление рисками
- 10.1 Риск вложений в ценные бумаги
- 10.1.1 Риск и его виды
- 10.1.2 Измерение риска
- 10.1.3 Вероятность распределения
- 10.1.4 Мера риска
- 10.1.5 Соотношение риска и доходности ценных бумаг
- 10.1.6 Рейтинги ценных бумаг
- 10.2 Доходность и риск портфеля ценных бумаг
- 10.2.1 Снижение риска посредством диверсификации
- 10.2.2 Портфельный анализ
- Контрольная работа № 1 по теме «Простые и сложные проценты».
- 2.4. Эквивалентность ставок