6. Аннуитет
Одним из ключевых понятий в финансовых расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.
Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае:
С1 = Сз = ... = Сп = А.
Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.
Формула для расчета текущей стоимости аннуитета имеет вид
PVA = A/(1+i)+A/(1+i)2 A/(1+i)3+…+A/(1+i)n.
Введем следующие обозначения
B = A/(1+i),
C = 1/(1+i).
В результате получим
PVA = B*(1+C+C2+C3+… +Cn-1) *
Умножая левую и правую части уравнения на величину C
PVA*С = B*(C+C2+C3+… +Cn) **
Вычитая уравнение ** из * получим
PVA*(1-С) = B*(1-Cn).
Или
PVA*[1-1/(1+i)] = A/(1+i)*[1-1/(1+i)n)].
Умножение обеих частей уравнения на величину (1+i) дает
PVA*i = A*[1-1/(1+i)n)]
Или
PVA = A*[1/i-1/(i*(1+i)n)].
Аналогичным образом может быть получено выражение для расчета будущей стоимости аннуитета.
FVA = A+A*(1+i)2 A*(1+i)3+…+A*(1+i)n-1.
Введем обозначения B=A*(1+i)/ и получим
FVA = A*(1+B +B2 B3+…+Bn-1).
Умножим обе части уравнения на величину B.
FVA*B = A*(B +B2 B3+…+Bn).
Вычитая данное уравнение из предыдущего получим,
FVA*(1-B) = A*(1-Bn).
Или
FVA = A/i*[(1+i)n-1].
По аналогии с функциями FM1(i,n)= (1+i)n и FM2(i,n)=1/(1+i)n функции FM3(i,n)= 1/i*[(1+i)n-1] FM4(i,n)=[1/i-1/(i*(1+i)n)] и табулированы для различных значений i и п. Экономический смысл FМЗ(i,п), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FМ4(i,п) показывает текущую стоимость аннуитета в одну денежную единицу при заданных значениях i и n.
При выполнении некоторых инвестиционных расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).
В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение может быть получено на основе формулы
PVA = A*[1/i-1/(i*(1+i)n)]
при n стремящейся к бесконечности.
PVA = A/i
Приведенная формула используется для оценки целесообразности приобретения бессрочного аннуитета. В этом случае известен размер годовых поступлений; в качестве коэффициента дисконтирования i обычно принимается гарантированная процентная ставка (например, процент, предлагаемый государственным банком).
Yandex.RTB R-A-252273-3
- Основы финансовых вычислений
- Содержание
- 1. Учет временной стоимости денег
- 2. Простой и сложный процент
- 3. Частота начисления сложных процентов
- 4. Текущая стоимость денег
- 5. Оценка денежных потоков
- 6. Аннуитет
- 7. Амортизация кредитов
- 8.Влияние инфляции
- 9. Оценка долговых и долевых ценных бумаг
- 9.1 Цена облигаций
- 9.2 Зависимость цены облигации от процентной ставки
- 9.3 Доходность облигаций
- 9.4 Цена и доходность депозитных сертификатов и векселей
- 9.5 Доходность акции
- 10. Анализ и управление рисками
- 10.1 Риск вложений в ценные бумаги
- 10.1.1 Риск и его виды
- 10.1.2 Измерение риска
- 10.1.3 Вероятность распределения
- 10.1.4 Мера риска
- 10.1.5 Соотношение риска и доходности ценных бумаг
- 10.1.6 Рейтинги ценных бумаг
- 10.2 Доходность и риск портфеля ценных бумаг
- 10.2.1 Снижение риска посредством диверсификации
- 10.2.2 Портфельный анализ
- Контрольная работа № 1 по теме «Простые и сложные проценты».
- 2.4. Эквивалентность ставок