2. Простой и сложный процент
Простой процент – это такой процент, при котором его величина начисляется на первоначально вложенную сумму средств. При этом сумма процента, начисленного в предыдущие периоды, не принимается в расчет в процессе последующего наращения. В случае сложного процента процент начисляется на постоянно нарастающую базу с учетом процентов, начисленных в предыдущие периоды. Он применяются в тех случаях, когда процент по кредитам (депозитам) выплачивается не сразу, а присоединяется к сумме основного долга. Такая процедура носит название капитализации.
Величины (1+n*i) и (1+i)n называются коэффициентами (множителями) наращения простых и сложных процентов соответственно.
Пример. Предположим, что вы положили на банковский счет 1000 руб. (PV) Процентная ставка равна 10% годовых. Необходимо рассчитать сумму, которую вы получите через 5 лет при условии, что не будите изымать проценты.
Рассчитаем будущую стоимость поэтапно. В конце первого года у вас на счете будет сумма равная
FV1= 1000* (1+0.1) = 1100 руб.
Полученная сумма складывается из 1000 рублей, с которых начиналась данная финансовая операция, плюс проценты в размере 100 руб. Будущая стоимость 1000 руб. к концу первого года составила 1100 руб.
Если вы оставите 1100 руб. еще на один год, то по окончании второго года вы будите иметь сумму
FV2= 1100* (1+0.1) = 1210 руб.
Данную сумму можно представить в виде трех составляющих. Исходные деньги – 1000 рублей, проценты за первый год 100 руб. и за второй год – 100 руб. Проценты, начисленные на основную сумму вклада, называются простыми процентами. Третья составляющая равна 10 руб. и представляет проценты, полученные во второй год, которые были начислены на 100 рублей, полученные в виде процентов за первый год. Проценты, начисленные на уже начисленные ранее проценты, называются сложными процентами. Общая сумма процентных начислений 210 руб. состоит из простых процентов (200 руб.) и сложных процентов (10 руб.).
Продолжая представленную цепочку вычислений, мы можем рассчитать сумму на счете через 5 лет.
FV5= 1000* (1+0.1)5 = 1610.51 руб.
Таким образом, будущая стоимость 1000 руб. через пять лет при ставке ссудного процента 10% годовых составляет 1610.51 руб. Общая сумма процентных начислений за пять лет составляет 610.51 руб., из которых 500 руб. являются простыми процентами и 110.51 – сложными.
Пример. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию. Сколько из этой суммы составят простые и сложные проценты.
FV = 1000 * (1+0.1)40 = 45259.26
Полученная сумма складывается из первоначальной суммы равной 1000 руб., простых процентов 1000*0.1*40 = 4000 руб. и сложных процентов, равных 40259.26 руб.
Рассмотрим эффект увеличения процентной ставки до 11%.
FV = 1000 * (1+0.11)40 = 65000.87 руб.
В данном примере кажущееся незначительным увеличение процентной ставки на 1% привело к получению дополнительной суммы равной 24741.61 руб.
Наряду с задачами наращения по сложному проценту в практике финансовых вычислений имеют место задачи, требующие наращения по простым процентам. В этом случае проценты начисляются только на основную сумму вклада. К ним относятся задачи определения цены краткосрочных финансовых инструментов, а также долгосрочных инструментов, если проценты не присоединяются к основному долгу, а выплачиваются. Формула для определения будущей стоимости денег для данного случая будет иметь вид:
FV = PV * (1+ n*i).
В этой формуле мы использовали ранее принятые обозначения.
Пример. Возвратимся к рассмотренному выше примеру. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию.
FV = 1000 * (1+40*0.1) = 1000+4000 = 5000
Полученная сумма складывается из первоначальной суммы равной 1000 руб. и простых процентов 1000*0.1*40 = 4000 руб.
Процент может определяться не только при расчетах от настоящего к будущему, но и от будущего к настоящему. В этом случае процент представляет собой скидку с некоторой конечной суммы. Например, в банковской практике учета векселей стоимость векселя является конечной суммой, с которой производится скидка по определенной ставке, называемой учетной. Разница между стоимостью векселя и суммой, которую банк выдает по этому векселю, называется дисконтом.
Задачи и решения
1. На депозит на срок два года положены 10000 руб. Какую сумму должен получить вкладчик в конце срока при начислении простых (сложных) процентов по ставке 18% годовых?
Для случая простых процентов получаем:
FV = PV *(1+n*i) = 10000*(1+2*0,18) = 13600 руб.
Для случая сложных процентов:
FV = PV *(1+ i)n= 10000*(1+*0,18)2= 13924 руб.
2. Найти период времени в течение которого первоначальная сумма вклада удвоится для случая простой и сложной процентной ставки равной 10%.
Для случая простой ставки
FV = 2*PV = PV *(1+n*i),
2 = *(1+n*0,1),
n = (2-1)/0,1 =10 лет.
Для случая сложной ставки
FV = 2*PV = PV *(1+i)n
(1+i)n = 2,
n*Ln(1+0,1) =Ln2,
n= Ln2/ Ln(1+0,1) = 0,69/0,095 = 7,26 года.
3. Найти процентную ставку (простую и сложную) при которой первоначальная сумма вклада удвоится за десять лет.
Для случая простой ставки
FV = PV *(1+n*i),
FV = 2*PV = PV *(1+10*i),
(1+10*i) = 2,
i = 1/10 = 0,1.
Для случая сложной ставки
FV = 2*PV = PV *(1+i)10
i = 2 1/10 – 1 = 0,072.
4. На вашем банковском вкладе проценты начисляются на основе «плавающей» ставки, которая изменяется каждый год. Три года назад вы положили на счет 10000 руб., когда процентная ставка была 15%. В прошлом году она упала до 12%, а в этом году установлена на уровне 10%. Какая сумма будет у вас на счете к концу текущего года? Расчеты произвести для случая простых и сложных ставок.
Для случая простой ставки
FV = PV *(1+n1*i1 + n2*i2 + n3*i3) = 10000*(1+1*0,15+1*0,12+1*0,1) = 13700 руб.
Для случая сложных ставок
FV = PV *(1+ i1)n1 *(1+ i2)n2 *(1+ i3)n3 = 10000* *(1+ 0,15)1*(1+ 0,12)1*(1+ 0,1)1 = 10000* 1,15*1,12*1,1 = 14168 руб.
5. В банк на срочный сберегательный счет положено 1000 руб. на два года по ставке 9% годовых, с дальнейшей пролонгацией на следующие три года по ставке 6%. Найти наращенную сумму через пять лет при простых и сложных ставках.
Для случая простой ставки
FV = PV *(1+n1*i1 + n2*i2) = 1000*(1+2*0,09+3*0,06) = 1360 руб.
Для случая сложных ставок
FV = PV *(1+ i1)n1 *(1+ i2)n2 = 1000* *(1+ 0,09)2*(1+ 0,06)3 = 1417 руб.
Yandex.RTB R-A-252273-3
- Основы финансовых вычислений
- Содержание
- 1. Учет временной стоимости денег
- 2. Простой и сложный процент
- 3. Частота начисления сложных процентов
- 4. Текущая стоимость денег
- 5. Оценка денежных потоков
- 6. Аннуитет
- 7. Амортизация кредитов
- 8.Влияние инфляции
- 9. Оценка долговых и долевых ценных бумаг
- 9.1 Цена облигаций
- 9.2 Зависимость цены облигации от процентной ставки
- 9.3 Доходность облигаций
- 9.4 Цена и доходность депозитных сертификатов и векселей
- 9.5 Доходность акции
- 10. Анализ и управление рисками
- 10.1 Риск вложений в ценные бумаги
- 10.1.1 Риск и его виды
- 10.1.2 Измерение риска
- 10.1.3 Вероятность распределения
- 10.1.4 Мера риска
- 10.1.5 Соотношение риска и доходности ценных бумаг
- 10.1.6 Рейтинги ценных бумаг
- 10.2 Доходность и риск портфеля ценных бумаг
- 10.2.1 Снижение риска посредством диверсификации
- 10.2.2 Портфельный анализ
- Контрольная работа № 1 по теме «Простые и сложные проценты».
- 2.4. Эквивалентность ставок