logo
Основы финвычислений Бухучет

2. Простой и сложный процент

Простой процент – это такой процент, при котором его величина начисляется на первоначально вложенную сумму средств. При этом сумма процента, начисленного в предыдущие периоды, не принимается в расчет в процессе последующего наращения. В случае сложного процента процент начисляется на постоянно нарастающую базу с учетом процентов, начисленных в предыдущие периоды. Он применяются в тех случаях, когда процент по кредитам (депозитам) выплачивается не сразу, а присоединяется к сумме основного долга. Такая процедура носит название капитализации.

Величины (1+n*i) и (1+i)n называются коэффициентами (множителями) наращения простых и сложных процентов соответственно.

Пример. Предположим, что вы положили на банковский счет 1000 руб. (PV) Процентная ставка равна 10% годовых. Необходимо рассчитать сумму, которую вы получите через 5 лет при условии, что не будите изымать проценты.

Рассчитаем будущую стоимость поэтапно. В конце первого года у вас на счете будет сумма равная

FV1= 1000* (1+0.1) = 1100 руб.

Полученная сумма складывается из 1000 рублей, с которых начиналась данная финансовая операция, плюс проценты в размере 100 руб. Будущая стоимость 1000 руб. к концу первого года составила 1100 руб.

Если вы оставите 1100 руб. еще на один год, то по окончании второго года вы будите иметь сумму

FV2= 1100* (1+0.1) = 1210 руб.

Данную сумму можно представить в виде трех составляющих. Исходные деньги – 1000 рублей, проценты за первый год 100 руб. и за второй год – 100 руб. Проценты, начисленные на основную сумму вклада, называются простыми процентами. Третья составляющая равна 10 руб. и представляет проценты, полученные во второй год, которые были начислены на 100 рублей, полученные в виде процентов за первый год. Проценты, начисленные на уже начисленные ранее проценты, называются сложными процентами. Общая сумма процентных начислений 210 руб. состоит из простых процентов (200 руб.) и сложных процентов (10 руб.).

Продолжая представленную цепочку вычислений, мы можем рассчитать сумму на счете через 5 лет.

FV5= 1000* (1+0.1)5 = 1610.51 руб.

Таким образом, будущая стоимость 1000 руб. через пять лет при ставке ссудного процента 10% годовых составляет 1610.51 руб. Общая сумма процентных начислений за пять лет составляет 610.51 руб., из которых 500 руб. являются простыми процентами и 110.51 – сложными.

Пример. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию. Сколько из этой суммы составят простые и сложные проценты.

FV = 1000 * (1+0.1)40 = 45259.26

Полученная сумма складывается из первоначальной суммы равной 1000 руб., простых процентов 1000*0.1*40 = 4000 руб. и сложных процентов, равных 40259.26 руб.

Рассмотрим эффект увеличения процентной ставки до 11%.

FV = 1000 * (1+0.11)40 = 65000.87 руб.

В данном примере кажущееся незначительным увеличение процентной ставки на 1% привело к получению дополнительной суммы равной 24741.61 руб.

Наряду с задачами наращения по сложному проценту в практике финансовых вычислений имеют место задачи, требующие наращения по простым процентам. В этом случае проценты начисляются только на основную сумму вклада. К ним относятся задачи определения цены краткосрочных финансовых инструментов, а также долгосрочных инструментов, если проценты не присоединяются к основному долгу, а выплачиваются. Формула для определения будущей стоимости денег для данного случая будет иметь вид:

FV = PV * (1+ n*i).

В этой формуле мы использовали ранее принятые обозначения.

Пример. Возвратимся к рассмотренному выше примеру. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию.

FV = 1000 * (1+40*0.1) = 1000+4000 = 5000

Полученная сумма складывается из первоначальной суммы равной 1000 руб. и простых процентов 1000*0.1*40 = 4000 руб.

Процент может определяться не только при расчетах от настоящего к будущему, но и от будущего к настоящему. В этом случае процент представляет собой скидку с некоторой конечной суммы. Например, в банковской практике учета векселей стоимость векселя является конечной суммой, с которой производится скидка по определенной ставке, называемой учетной. Разница между стоимостью векселя и суммой, которую банк выдает по этому векселю, называется дисконтом.

Задачи и решения

1. На депозит на срок два года положены 10000 руб. Какую сумму должен получить вкладчик в конце срока при начислении простых (сложных) процентов по ставке 18% годовых?

Для случая простых процентов получаем:

FV = PV *(1+n*i) = 10000*(1+2*0,18) = 13600 руб.

Для случая сложных процентов:

FV = PV *(1+ i)n= 10000*(1+*0,18)2= 13924 руб.

2. Найти период времени в течение которого первоначальная сумма вклада удвоится для случая простой и сложной процентной ставки равной 10%.

Для случая простой ставки

FV = 2*PV = PV *(1+n*i),

2 = *(1+n*0,1),

n = (2-1)/0,1 =10 лет.

Для случая сложной ставки

FV = 2*PV = PV *(1+i)n

(1+i)n = 2,

n*Ln(1+0,1) =Ln2,

n= Ln2/ Ln(1+0,1) = 0,69/0,095 = 7,26 года.

3. Найти процентную ставку (простую и сложную) при которой первоначальная сумма вклада удвоится за десять лет.

Для случая простой ставки

FV = PV *(1+n*i),

FV = 2*PV = PV *(1+10*i),

(1+10*i) = 2,

i = 1/10 = 0,1.

Для случая сложной ставки

FV = 2*PV = PV *(1+i)10

i = 2 1/10 – 1 = 0,072.

4. На вашем банковском вкладе проценты начисляются на основе «плавающей» ставки, которая изменяется каждый год. Три года назад вы положили на счет 10000 руб., когда процентная ставка была 15%. В прошлом году она упала до 12%, а в этом году установлена на уровне 10%. Какая сумма будет у вас на счете к концу текущего года? Расчеты произвести для случая простых и сложных ставок.

Для случая простой ставки

FV = PV *(1+n1*i1 + n2*i2 + n3*i3) = 10000*(1+1*0,15+1*0,12+1*0,1) = 13700 руб.

Для случая сложных ставок

FV = PV *(1+ i1)n1 *(1+ i2)n2 *(1+ i3)n3 = 10000* *(1+ 0,15)1*(1+ 0,12)1*(1+ 0,1)1 = 10000* 1,15*1,12*1,1 = 14168 руб.

5. В банк на срочный сберегательный счет положено 1000 руб. на два года по ставке 9% годовых, с дальнейшей пролонгацией на следующие три года по ставке 6%. Найти наращенную сумму через пять лет при простых и сложных ставках.

Для случая простой ставки

FV = PV *(1+n1*i1 + n2*i2) = 1000*(1+2*0,09+3*0,06) = 1360 руб.

Для случая сложных ставок

FV = PV *(1+ i1)n1 *(1+ i2)n2 = 1000* *(1+ 0,09)2*(1+ 0,06)3 = 1417 руб.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4